My laboratory develops and implements ultrasonic beamforming methods, ultrasonic imaging modalities, and ultrasonic devices for diagnostic imaging applications. Our current focus is on beamforming methods that are capable of generating high-quality images in the difficult-to-image patient population. These methods include general B-mode and Doppler imaging techniques that utilize additional information from the ultrasonic wavefields. We attempt to build these imaging methods into real-time imaging systems in order to apply them to clinical applications. In addition, our laboratory develops ultrasonic imaging devices, such as small, intravascular ultrasound (IVUS) arrays that are capable of generating high acoustic output. These arrays are capable of generating radiation force in order to push on tissue to elucidate the mechanical properties and structure of vascular plaques, but can be utilized for therapeutic applications of ultrasound as well.