In research, Dr. Waugh is a recognized leader in the study of cell and membrane mechanics and the structural basis for the mechanical behavior of cells and membranes. He has made major contributions to the understanding of membrane physical properties with an emphasis on relating changes in molecular structure and composition to their functional consequences. Much of his research centered on the red blood cell because it is an ideal model system for studying fundamental aspects of membrane behavior and because of the direct relevance red cell membrane stability has in understanding hemolytic anemia and vascular perfusion. He has also done fundamental work to characterize the basic properties of phospholipid bilayers, providing insight about the behavior of these basic structures found in all cell membranes. In addition, he was among the first to examine the mechanical properties of leukocytes and related cell types, again providing fundamental information about the relationship between the organization of cytoskeletal components and the consequent effects on rheological behavior. Most recently, he has turned his attention to leukocyte adhesion. Ongoing experiments are aimed at revealing the mechanisms that regulate the formation of adhesive contacts between cells and between cells and immobilized adhesive ligands. He was the first to quantify the interrelation of mechanical forces and the formation of adhesive contacts, and continues to explore how mechanics, surface topography, and chemical activation of cells combine to control adhesion.